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It is known that during electrodeposition or dissolution electrode shape change depends on the local 
current density (Faraday 's  law in differential form). Assuming that concentration gradients in the bulk 
of  the solution may be neglected, the current distribution in an electrochemical system can be modelled 
by a Laplace equation (describing charge transport) with nonlinear boundary  conditions caused by 
activation and concentration overpotentials on the electrodes. To solve this numerical problem, an 
Euler scheme is used for the integration of  Faraday 's  law with respect to time and the field equation 
is discretized using the boundary  element method (BEM). In this way, and by means of  a specially 
developed electrode growth algorithm, it is possible to simulate electrodeposition or electrode dissolu- 
tion. In particular, attention is paid to electrode variation in the vicinity of  singularities. It is pointed 
out  that  the angle of  incidence between an electrode and an adjacent insulator becomes right 0r/2). 
This is confirmed by several experiments. 

List of symbols 

M 

Pm 
z 
F 
Ra2 impedance of the linearized 

voltage on cathode (~2 cm -2) 

coordinates of a point i belonging to a boundary 
(m) 
time (s) 
thickness variation at a point belonging to an 
electrode (m) 
molecular weight (kg tool -1) 
specific weight (kg m -3) 
charge of an ion (C) 
Faraday's constant (C mo1-1) 

activation over- 

1. Introduction 

Electrode shape changes due to electrodeposition 
and electrodissolution with simultaneous mechanical 
displacement of electrodes, as encountered in electro- 
chemical machining, can be described by the following 
equation and boundary conditions [1, 2] 

d/~(2i, t) o ~ a O U ( Y c i ,  t) 
dt - pmzF 0"-------~ [n + ~t(xi, t) (1) 

with /~(~i, t = 0) = 0. In this equation the following 
are applicable: 
/~(2i, t) is the thickness variation at each point 2~ of the 
boundary (m); 
O(M/pmzF ) is the removal or growth rate (m 3 A -1 s-l); 
cr is the electrolyte conductivity (~-1 m-l); 
O(U(2i, t)/On)[n is the normal electric field at each 
point xi of the boundary (Vm-1); 
~(xi, t) is the rate and the direction of the displacement 
of each point -~i of the boundary (m s -1) with respect 
to a fixed reference point. Without loss of generality, 
~(xi, t) = 0 in the following. 

The boundary and the domain (the solution) 
change in time and, when concentration gradients in 

0 efficiency of the reaction 
electric conductivity (gt -I m -a) 

U electric potential (V) 
rate of mechanical displacement of a point 
(m s -1) 

V applied potential on an electrode (V) 
W Wagner number defined as the ratio of the mean 

07 impedance of the reaction ~ l Jay and the mean 
ohmic resistance of the cell given by L/~r with L 
a characteristic length of the cell. 

1] overvoltage (V) 
111 overvoltage on anode (V) 
112 overvoltage on cathode (V) 

the solution can be omitted, at each moment the 
normal electric field satisfies the following equation 
and boundary conditions 

m w 

v .  ( - ~ v u )  = o 

OU 
(~i, t) = o 

~ ( ~ i ,  t) = v -  111 

U(xi, t) = --112 

in the solution 

on insulating boundaries 

on the anode 

on the cathode. 

(2) 

In these equations, Vis the applied voltage and 111 and 
112 are the nonlinear overvoltages on the anode and 
cathode, respectively. 

When the conductivity is constant, as is often 
encountered, it is well known [3-5] that for the 
solution of Equation 2, the boundary element 
method (BEM) is the most natural technique since 
only data on the boundaries are needed and used. 
The boundary element method requires only a 
discretization of the boundary into elements having 
nodal points (Fig. 1). To integrate Equation 1 a 
simple forward difference equation was used [6-9]. 
In this paper only aspects of electrode growth in the 
vicinity of singularities will be considered. 
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2. Simulation of electrode shape change next to an 
insulator 

When the shape changes are small with respect to 
the element sizes and when no singularities are con- 
sidered, the simulation is rather simple because there 
always exists a one to one relation between a nodal 
point at each time step. In the general case, several 
problems encountered at the electrode extremities 
require careful treatment. In the following only elec- 
trode growth is discussed. Depending on the angle 
of  incidence at time step n(On) between insulator and 
electrode there are two possibilities. Figures 1 and 2 
represent part  of  an electrode near to an insulating 
boundary. 

When the internal angle 0= between electrode and 
insulator is smaller than or equal to 7v/2, (Fig. l(a)), 
the new electrode profile at timestep &+l will 
intersect the boundary. In this case the coordinates 
of  the intersection are to be calculated and elements 
and nodal points are changed (or cancelled) to obtain 
the configuration of Fig. l(b). 

On the other hand, as represented in Fig. 2(a), the 
internal angle On between electrode and insulator can 
be larger than 7r/2. At the following timestep n + 1, 
the new boundary is no longer closed. This is 
physically not correct and mathematically not 
allowed. In Fig. 2(b) and (c), two straightforward 
methods are shown to maintain the boundary 
closed. In Fig. 2(b) the new electrode profile at time- 
step tn+l is obtained by introducing two elements 
between the new and the old extremity of  the 
electrode. There is no overgrowth, in contrast with 
Fig. 2(c) where it is supposed that the electrode may 
be extrapolated to the boundary. Although the 
reality will be somewhere between these extremes, 
there are more arguments for accepting the idea 

Nodal  po in t  ~.. , tn/ 

tn+l 

(b) 
Fig. 1. Shape change near a contact between an electrode and an 
insulator when O n <_ 7r/2; (a) before rearrangement of the 
discretized boundary, and (b) after rearrangements of elements. 
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Fig. 2. Shape change near a contact between an electrode and an 
insulator when 0, > 7r/2; (a) before rearrangement of the discre- 
tized boundary, (b) connection is applied to keep the boundary 
closed, and (c) extrapolation is applied to keep the boundary closed. 

of  Fig. 2(b). A further possibility, which will be 
discussed later, was introduced by Ducovic [8]. 

Using the two mentioned possibilities to maintain 
the boundary closed, the deposition on the cathode 
was simulated in a Hull cell with the following 
dimensions: anode 6 cm, cathode 10 cm, shortest and 
longest distance between electrodes 5 cm and 13 cm. 
On the anode no overvoltage was considered 
because of its minor influence on the current density 
distribution on the cathode. On the cathode a small 
and a large linearized overvoltage were applied 
(/]2 = R a 2 J  with J the local current density). At this 
stage linearization is justified as only general con- 
cepts are explained. The electrical conductivity cr of  
the solution was 0.25 fU 1 cm -1 and 1 V was applied 
between both electrodes. The results of  these 
simulations, calculated with the data given in 
Table 1, are shown in Fig. 3(a)-(d). 

Figure 3(a) and (c) were obtained by keeping the 
boundary closed by extrapolation, according to 
Fig. 2(c). In Fig. 3(a) the current density distribution 
is influenced by both the geometry of the cell and 
the overvoltage 72- A non-negligible overpotential 
was introduced, only in order to see the evolution of 
the simulated electrode profile. Without an over- 
potential on the cathode the phenomenon seen here 

Table 1. Numerical data applied for the simulations of Fig. 3(a) (d) 

Numerical data R~/(Q cm -2) L/cm W = Ra2~r/L 

Fig. 3(a) 10 5 0.5 
Fig. 3(b) 0.01 5 0.005 
Fig. 3(c) 10 000 5 500 
Fig. 3(d) 10 000 5 500 
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Fig. 3. Electrodeposition in a Hull cell simulated with extrapolation and connection of the electrode. Different Wagner  numbers  W are 
considered: (a) extrapolation W = 0.5, (b) connection W = 0.005, (c) extrapolation with uniform growth W = 500, and (d) connection with 
uniform growth W = 500. 

at the fifth timestep, occurs immediately, since for a 
primary current density distribution, the current 
density at the lower electrode extremity is so high 
that no intersection with the insulating boundary 
could be found. In Fig. 3(c), due to the influence 
of a significant overvoltage, the current density 
distribution is uniform and so is the corresponding 

electrode growth. In Fig. 3(b) and (d) connection 
of the electrode extremities on successive timesteps, 
according to Fig. 2(b), was used. In Fig. 3(a) the 
current distribution is almost a primary distribution 
(W = 0.005). The small overpotential only influences 
the current density in a region very close to the singu- 
larity. In Fig. 3(d) the current density distribution and 
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Fig. 4. Reduction of copper: measured overpotential on 
cathode applied to simulate electrode deposition. 
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Fig. 6. Cell geometry with 00 = ~r and simulated profile history on anode (dissolution) and cathode (deposition). 

the electrode growth are uniform due to the smoothing 
effect of  the overvoltage (W = 500). 

It  is believed, regardless of  the applied overvoltage, 
that the results obtained with connection of  the 
electrode extremities at successive time steps, are 
much closer to reality. This can be rationalized as 
follows. In theory, when the Wagner number is 
strictly zero, near to the singularity point A, the 
only possible electrical stable situation is a growth 

towards a situation where 'at  each moment '  the angle 
between electrode and insulator is right. Indeed, 
when the angle is larger than 7r/2, it will increase after 
each time step since the current density at the 
extremity tends to infinity. On the other hand, once 
the angle becomes smaller than 7r/2 (there is no 
reason for this) the current density will be zero at 
the extremity and the angle of  incidence will decrease 
to zero. A clear distinction has to be made between 

E 
E 

4 . 0  

C 

{3 
e- 

"(3 

2.0 
O 
Q.  

a 

0.0 
18.0 l :)0.0 Insulator 

MODELLING ELECTRODE GROWTH 215 

Cathode distance/cm 
Fig. 7. Cell geometry of Fig. 6: simulated profile 
history near the singularity on the cathode 
(At = 209 min). 



216 J. DECONINCK 

6.0 

E 
E 

~, 4.0 
t -  

O 

t -  

g 2.o 

0.0 

..." ".._. 

18o ' Ik0.o 
Cathode d is tance/cm 

the concept of  electrical stability, valid at each 
moment,  and the concept of stable deposit growth. 
As no dissolution of  the anode is considered, deposit- 
ing material on the cathode is, in fact, not stable, even 
in the case of  a uniform compact deposit. Non- 
compact (e.g. dendritic) deposits are not considered 
here. The distance between both electrodes is always 
reduced by deposited metal such that, for a given 
potential difference, the current density and, con- 
sequently, the rate of  metal deposition, will gradually 
increase, in theory up to short-circuit. It is obvious 
that for a primary current distribution once part of  
a cathode protrudes, it will grow faster and faster by 
attracting more and more current, as observed in 
Fig. 3(b). 

When the current density is almost uniform (W is 
large), the electrode must grow uniformly in all 
directions. Hence, starting from the same point A 
(Fig. 3(d)), the points B and C, as well as all points 
on the electrode lying between B and C, must lie at 
the same distance from A. Between B and C the elec- 
trode profile should be part of a circle. This is 
approached using connection of the extremities. 
Simple extrapolation introduces a growth tangential 
to the electrode which makes no sense. 

For  0 < W < ec, the same arguments exist and it 
may be concluded that for secondary distributions 
and starting from a singularity, the electrode profile 
will grown in such a way that the angle between the 
electrode and an adjacent insulator becomes and 
stays right. Therefore, but also because extrapolation 
is impossible when the electrode makes an angle 
with the boundary being _> 7r, extrapolation is not 
acceptable and can give large errors. Due to the 
discretization of  space and time, during simulations 
the incident angle can become somewhat smaller 
than 7r/2. 

In the moving boundary algorithm presented by 
Ducovic, the gap is bridged with a circular arc having 
as centre point the electrode extremity on time step 
n and as radius the displacement of that electrode 
extremity. This method accepts inherently that the 

Insulator  Fig. 8. Cell geometry of Fig. 6: comparison between 
measurement and simulation of deposited copper 
near the singularity. 

angle between an electrode and an adjacent insulator 
is right. Indeed, after the first timestep it is made 
right by construction. In contrast to the method of 
connection of the electrode extremities a certain 
overgrowth is also considered during the timestep. 
This corresponds with reality but for significant edge 
effects an overestimation is most probable when 
the timestep is (too) large. When sufficient small 
timesteps are applied, bridging a gap between two 
successive iterations by connection of the electrode 
extremities or by extrapolation with a circular arc 
will yield comparable results. 

3. Comparison with experiment 

To evaluate these numerical simulations and also 
because the growth out of  a singularity in itself is a 
fascinating phenomenon, an experimental setup was 
built. The copper system was chosen to be a 0.8 M 
CHSO 4 (p.a)--0.8M H2SO 4 (p.a) solution containing 
5 m g d m  -3 thiourea in order to obtain smooth 
deposits. The electric resistivity of the electrolytic 
solution, measured with an impedance method, 
was 4.3f~cm at 25°C. The anodic and cathodic 
polarization curves (Tx and 72) were recorded on 

Fig. 9. Cell geometry of Fig. 6: picture of the deposited copper in the 
vicinity of the singularity (00 = 7r). The raster size is 1 mm 2. 
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Fig. 10. Cell geometry with 00 = 37r/4 and 
simulated profile history on anode and cath- 
ode. The anode dissolves whereas on the 
cathode copper is deposited. 
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Fig. 11. Cell geometry of Fig. 10: simulated profile 
history near the singularity of the cathode 
(At = 360 min). 

electrolytic pure copper (the same metal used for 
the growth experiments) with a conventional three- 
electrode configuration. Special care was taken to 
minimize ohmic voltage drop and it was investigated 
to what extent the overvoltages were independent on 
mass transport.  The results are given in Figs 4 and 
5. An approximation by cubic spline curves of  these 
measured overvoltages was applied to model the 
nonlinear overvoltages during numerical growth 
simulations. 

All measures were taken in order to have an ideal 
situation during the electrode growth experiments: 
constant temperature, removal of  oxygen with 
nitrogen, maintaining a nitrogen blanket during 
experiments, rinsing of electrodes, no agitation, 
sufficiently low current density to ensure the con- 
ditions of  a secondary current density distribution, 
warming-up of apparatus and preloading of the 
voltage source. Before and after each experiment, 
the electrodes were weighed. 100% efficiency was 
observed. After each experiment, the cathode was 
embedded in epoxy resin and cut to obtain several 
cross sections which were polished. Subsequently 

the profiles were measured using a Nikon-measure 
scope Model I I  having a precision of  0.001 mm. 
The final profile, used for comparison with calcu- 
lations, was obtained by taking the mean value of  at 
least three measured profiles. A given experiment 
was compared with a calculation for the same 
amount  of  charge. This means, that when the calcu- 
lated total current was different from the measured 
one, the simulation time was adapted to have the 
same charge. 

In Fig. 6 the cross section of the cell geometry with 
the simulated copper deposition on the cathode and 
copper dissolution on the anode are shown. Initially 
the angle between cathode and insulator (00) was 
7r. This experiment ran for 87.083h, the applied 
voltage was 0.778V. The total charge was 213.4Ah 
and the measured weight change of the cathode was 
253.2 g. 

In Fig. 7 the detail of  the simulated profile history 
is given. It  can be seen that at the first timestep two 
elements are introduced to connect both electrode 
extremities. Then the growth over the insulator is 
commenced. For  the same experiment a comparison 
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Fig. 12. Cell geometry of Fig. 10: comparison 
between measurement (0) and simulation (full 
line) of deposited copper near the singularity. 
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Fig. 13. Cell geometry of Fig. 10: picture of the deposited copper in 
the vicinity of the singularity 00 = 3~r/4. The raster size is 1 mm 2. 

is made,  in Fig. 8, between the experimental and 
simulated profile. The final electrode profile obtained 
in the experiment is shown in Fig. 9. Clearly, the theo- 
retical and numerical  results are in good  agreement.  
Several other  experiments were performed with 
varying applied voltages and electrode distances. In  
all cases the predicted electrode evolution was in 
good  agreement  with the experiments. 

Figure 10 shows the case where the initial angle (00) 
between the extremity o f  the ca thode  and the adjacent 
insulator  is 37r/4. The experiment ran for 79.15 h, the 
applied voltage was 0.803V. The total charge was 
2 1 5 . 5 7 A h  and the measured weight change of  the 
ca thode  was 256.4 g. 

In  Figs 11 and 12 a detail o f  the simulated profile 
history and the compar i son  with the corresponding 
experiment are given. Figure 13 represents the final 
profile. 

In  the more  uni form parts, away f rom the singu- 
larities, the difference between simulations and experi- 
ments  can be at tr ibuted to errors involved by 
measurement  (conductivity,  polarizat ion curves, 
current,  voltage, profiles) and surface roughness.  
Near  to a singularity, the surface roughness was 

more  pronounced.  This causes larger measuring 
errors but  also indicates that  phenomena  such as 
mass transport ,  not  considered in these simulations, 
might  become important .  

5. Conclusion 

Even in the vicinity o f  singularities, mathemat ical  
modell ing o f  electrodeposit ion is possible provided 
that  the electrode extremities between two successive 
timesteps are interconnected. These simulations 
provide acceptable agreement with experimental 
results. Phenomena  such as overgrowth,  overshoot ,  
and the fact that  the angle o f  incidence between an 
electrode and an insulator becomes perpendicular,  
are well described. 

References 

[1] J. Newman, 'Electrochemical Systems', Prentice Hall, 
Englewood Cliffs, NJ (1973). 

[2] J.A. McGeough, 'Principles of Electrochemical Machining'. 
Chapman & Hall, London (1974). 

[3] J. Deconinck, G. Maggetto, P. Versyck and J. Vereecken, 
'The Boundary Element Method (BEM) for Calculation 
of Current Distributions in Electrochemical Systems'. 
Extended abstracts of the 34th ISE Meeting, Erlangen, 
BRD (1983). 

[4] G. Finoly, A. Gernay and A. Giroud, 'Application and 
Validation of the Boundary Element Method to Catho- 
dic Protection Designs on Vessels', XIVth International 
Conference on Boundary Element Methods, Vol. 1, 
Sevilla, Nov. (1992) pp. 423-435. 

[5] F. Brichau and J. Deconinck, 'A numerical model for 
cathodic protection of buried pipe lines', accepted for 
publication in Corrosion (NACE). 

[6] J. Deconinck, 'Current Distribution and Electrode Shape 
Changes in Electrochemical Systems - a Boundary 
Element Approach', Lecture Notes in Engineering no. 
75, Springer-Verlag (1992). 

[7] N.G. Zamani and J. M. Chuang, Electroplating, in 'Topics 
in Boundary Element Research', Vol. 7, Electrical Engi- 
neering Applications, Springer-Verlag (1990) Chapter 6. 

[8] G.A. Prentice, 'Modeling of Changing Electrode Profiles', 
Ph.D thesis, Lawrence Berkeley Laboratory, University 
of California (1980). 

[9] J. Ducovic and C. W. Tobias, aT. Electrochem. Soc., 137 
(1990) 3748-3755. 


